
SANDIA REPORT
SAND2007-xxx
Unlimited Release
Printed ??? 2007

A Linear Algebra Interpretation of
Non-Euclidean Scalar Products and
Vector Spaces and their impact on

Numerical Algorithms

Roscoe A. Bartlett
Optimization/Uncertainty Estim

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia

Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government, nor any agency thereof, nor any of their employees,

nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied,

or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any infor-

mation, apparatus, product, or process disclosed, or represent that its use would not infringe privately

owned rights. Reference herein to any specific commercial product, process, or service by trade name,

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-

mendation, or favoring by the United States Government, any agency thereof, or any of their contractors

or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of

the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available

copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

•
 •
U
N

IT
ED

STATES OF AM

ER
I C

A

2

SAND2007-xxx
Unlimited Release
Printed ??? 2007

A Linear Algebra Interpretation of Non-Euclidean Scalar
Products and Vector Spaces and their impact on

Numerical Algorithms

Roscoe A. Bartlett
Optimization/Uncertainty Estim

Sandia National Laboratories∗, Albuquerque NM 87185 USA,

Abstract

Many numerical algorithms are derived, analyzed and expressed with respect to Euclidean
vector spaces. However, many applied mathematicians have shown the utility of explessing
and implementing many different types of numerical algorithms with respect to non-Eucliean
vector spaces. Coming from a functional analysis background, it natural to express many types
of numerical algorithms in non-Eucliean form by introducing the notion of an scalar (or in-
ner) product. The introduction of a non-Eucliean vector space an scalar product fundamentally
changes the meaning of linear operators and other constructs commonly used the express nu-
merical algorithms. The purpose of this paper is to provide afoundation for understanding
the meaning and implications of expressing numerical algorithms in non-Eucliean form. This
discussion requires no background in functional analysis and is based purely on basic finite-
dimensional linear algebra. The goal is to provide the reader with a level of confidence in
expressing numerical algorithms in non-Eucliean form. A simple procedure is presented for
taking any numerical algorithm expressed using Euclidean vector spaces and translating it to
non-Euclidean form in the most general way possible. Examples and analysis of the issues in-
volved are demonstrated for different types of numerical algorithms such as Newton methods,
quasi-Newton methods, optimization globalization methods, and inequality constraints. The
goal of this paper is not to make everyone who writes numerical algorithms become experts in
functional analysis. Instead, the goal is to empower non-functional-analysis experts with the
ability to write numerical software with enoguh hooks to allow application domain experts with
knowledge of the (infinite dimensional) structure of the problem to customize the algorithms in
an efficient and practical way.

∗Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United
States Department of Energy under Contract DE-AC04-94AL85000.

3

Acknowledgment

The authors would like to thank ...

The format of this report is based on information found in [?].

4

Contents

1 Introduction to vector spaces, basis representations, scalar products, and natural norms . . . 9
1.1 Basis and coefficient representations of vectors and vector spaces 9
1.2 Standardvectoroperations 9
1.3 Square, invertible basis representations 10
1.4 Definition of the scalar (or inner) product for a vector space 10
1.5 Definition of the natural norm for a vector space 10
1.6 Orthonormal and orthogonal basis representations 11
1.7 Equivalence of basis representations and the scalar product . 11
1.8 Linear operators .. 11
1.9 Dealing only with scalar products and vector coefficients in algorithm construction . 13

2 Impact of non-Euclidean scalar products on matrix representations of linear operators 14
2.1 The “natural” matrix representation of a linear operator . 14
2.2 The “Euclidean” matrix representation of a linear operator . 16

3 Impact of non-Euclidean scalar products on derivative representations 19
3.1 Derivatives of multi-variable scalar functions 19
3.2 Derivatives of multi-variable vector functions 21

4 Impact of non-Euclidean scalar products on various numerical algorithms. 23
4.1 Newton methods 24
4.2 Minimization, merit functions and globalization methods . 26
4.3 Least-squares merit functions .. 28
4.4 Variable metric quasi-Newton methods 28
4.5 Inequality constraints .. 31

5 Vector Coefficient Forms of Numerical Algorithms 33
6 Summary. .. 34
7 ToDo .. 35
References .. 36

Appendix

5

Figures

6

Many numerical algorithms are written in terms of Euclideanvector spaces where dot products
are used for the scalar inner product. For example, the innerloop of a linear conjugate gradient
(CG) methodk = 0. . . for solving Ax = b, initialized usingr = r0 = b−Ax0, is often written in
Euclidean (or dot-product) form as

ρk = rHr,

p = r +
ρk

ρk−1
p,

q = Ap,

α =
ρk

pHq
,

x = x+ αp,

r = r −αq.

An experienced mathematician will look at the above algorithm an immediately write down the
generalized form by replacing the dot productsrHr and pHq with the scalar products< r, r > and
< p,q > and restate the inner loop of the above CG algorithm as

ρk = < r, r >,

p = r +
ρk

ρk−1
p,

q = Ap,

α =
ρk

< p,q >
,

x = x+ αp,

r = r −αq.

Just as with linear CG, many numerical algorithms expressedin Euclidean form with dot prod-
ucts and Euclidean norms||.||2 (such as various optimization algorithms, stability analysis methods,
time integration methods, etc.) have straightforward extensions to non-Euclidean vectors and vector
spaces. What we would like is to have a straightforward process by which we can analyze many
different types of existing numerical algorithms expressed in Euclidean form and then write out, if
possible, the more general non-Euclidean form of these algorithms. We also want to do this in such
a way that we do not have to revisit all of the mathematical assumptions and theorems that went
into the development of the algorithm.

One might ask the following questions. What’s the big deal inreplacing dot products with scalar
products? What is this scalar product< ., . > and what does this mean? What is the relationship
between vectorsp andq for algorithms stated in Euclidean form and in non-Euclidean form? By
what justification can one just replace dot products likepHq with scalar products< p,q >? What
other changes do we need to make due to this subtle change of replacing dot products with scalar
products? How is the definition of linear operators and otherobjects affected by the introduction
of non-Euclidean scalar products? What does all of this buy you? Here we seek to answer all of
these questions in a way that a person without knowledge of functional analysis or other advanced
mathematics can understand and appreciate. All that we assume is that the reader has a basic under-
standing of linear algebra and a familiarity with multi-variable numerical algorithms like Newton’s
method [???] for nonlinear equations.

7

Here we present a linear algebra interpretation of finite dimensional non-Euclidean inner prod-
uct spaces and how they influence numerical algorithms and applications. The goal of this treatment
is to present this topic in a way that non-mathematicians canunderstand and appreciate. The ba-
sic approach will be to show the relationship between typical Euclidean-based vectors and vector
spaces (i.e. where the dot product is used for the inner product and a linear operator is equivalent to
a matrix) and non-Euclidean basis representations, vectors, and vector spaces (i.e. where the inner
product is defined by a positive-definite matrix and a linear operator is not necessarily equivalent to
a matrix). What we will show is a straightforward way to take many different types of numerical
algorithms that are expressed in Euclidean form and then to analyze them for non-Euclidean vectors
and spaces and see if they can be transformed for use with non-Euclidean spaces. What we will
show is that the expression of a numerical algorithm in a non-Euclidean space is essentially equiv-
alent to performing a linear transformation of variables and model functions except that we do not
need to actually perform the transformation at the model level which has many different advantages.

8

1 Introduction to vector spaces, basis representations, scalar
products, and natural norms

In this section, we provide a quick overview of the concepts of finite-dimensional vector spaces,
vector basis and coefficient representations, scalar products, and norms. The mathematical system
described here is that of finite-dimensional Hilbert spaces[???]. Here we show straightforward
connections between Euclidean and non-Euclidean representations of vectors. In this introductory
material, we deal with general vectors in a complex spaceCl n with complex scalar elements.

1.1 Basis and coefficient representations of vectors and vector spaces

Consider a complex-valued vector spaceS ⊆ Cl n with the basis vectorsei ∈ Cl m, for i = 1. . .m, such
that any vectorx∈ Cl n can be represented as the linear combination

x =
m

∑
i=1

x̃iei (1)

wherex̃∈ S is known as thecoefficient vectorfor x in the spaceS . In order for the set of vectors
{ei} to form a valid basis, they must minimally be linearly independent andm≤ n must be true. In
a finite dimensional setting, when we say that some vector is in some spaceS what we mean is that
it can be composed out of a linear combination of the space’s basis vectors as shown in (1).

Another way to represent (1) is in the matrix form

x = Ex̃ (2)

whereE ∈ Cl n×m is called theBasis Matrixwho’s columns are the basis vectors for the spaceS ; in
other words

E =
[

e1 e2 . . . em
]

. (3)

The basis matrix form (2) will allow us to use standard linearalgebra notation later in various
types of derivations and manipulations.

The choice of which of the two different representations of avectorx or x̃ has a dramatic impact
on the interpretation of the operations in a numerical algorithm.

1.2 Standardvector operations

A few different types of operations can be performed on just the coefficients for a set of vectors
which have the same meaning for the vectors themselves. These are the set of classicvectoropera-
tions of assignment to zero, vector scaling, and vector addition which are stated as

9

• x = 0:

x = Ex̃ = 0 ⇒ x̃ = 0

• z= αx:

z= Ez̃= αx = αEx̃ = E(αx̃) ⇒ z̃= αx̃

• z= x+y:

z= Ez̃= x+y = Ex̃+Eỹ= E(x̃+ ỹ) ⇒ z̃= x̃+ ỹ.

Note that other types of element-wise operations on the coefficients like element-wise products
and divisions are not equivalent to the corresponding operations on the vectors themselves and are
hence notvectoroperations.

1.3 Square, invertible basis representations

Up to this point, the vector spaceS can be a strict subspace ofCl n sincem< n may be true. We
will now focus on the case wherem= n which gives a nonsingular basis matrixE ∈ Cl n×n that can
be used to represent any vectorx ∈ Cl n. As a result,E−1 is well defined and can be used in our
expressions and derivations.

1.4 Definition of the scalar (or inner) product for a vector space

Now consider the dot inner product of any two vectorsx,y∈ Cl n which takes the well known form

xHy =
n

∑
i=1

conjugate(xi)yi . (4)

Using the substitutionx = Ex̃ andy = Eỹ, the inner product in (4) can be represented as

xHy = (x̃HEH)(Eỹ) = x̃HQỹ, (5)

whereQ = EHE is a symmetric positive-definite matrix. It is this matrixQ that is said to define the
scalar (or inner) product of two coefficient vectors ˜x, ỹ∈ S as

xHy =< x̃, ỹ >S= x̃HQỹ. (6)

1.5 Definition of the natural norm for a vector space

The natural norm||.||S of a vector space is defined as

||x|| =
√

xHx =
√

< x̃, x̃ >S = ||x̃||S (7)

where< x̃, x̃ >S is defined in (6) in terms of the scalar product matrixQ.

10

1.6 Orthonormal and orthogonal basis representations

Note that all orthonormal sets of basis vectors, i.e.

eH
i ej =

{

1 if i = j
0 if i 6= j

result in anorthogonal matrix1 E that gives identity for the scalar product matrixQ = EHE = I .
Therefore, all orthonormal sets of basis vectors result in aEuclidean scalar product, even if the basis
vectors are not Cartesian (i.e.eT

i 6=
[

0 . . . 1 . . . 0
]

). Also note that all orthogonal sets of
basis vectors give a scalar product matrixQ = EHE that is diagonal.

When the scalar product matrixQ is diagonal, it is trivial to compute a diagonal scaling matrix
Q

1/2 and then use this scaling matrix to scale all vectors and operators before the numerical algo-
rithm even sees them. In these cases, it is questionable whether the more general concept of scalar
products is worth the effort in expressing and implementingnumerical algorithms, which is our
ultimate goal here. Therefore, we are primarily focused on problems that require more than simply
diagonal scaling.

1.7 Equivalence of basis representations and the scalar product

One important detail to mention is that given a particular vector spaceS with its corresponding
scalar product defined usingQ in (6), there are infinitely many different selections for the basisE
that give the same scalar product. To see this, letF ∈Cl n×n be any orthogonal matrix (i.e.FHF = I).
We can the use a particular choice forF to transform the scalar product as

xHy = x̃HQỹ = x̃H(EHE)ỹ = x̃HEH(FHF)Eỹ = x̃H(FE)H(FE)ỹ = (x̃H ĒH)(Ēỹ) = x̄H ȳ (8)

wherex̄ = Ēx̃, x̄ = Ēx̃, andĒ = FE. We see that̄E ∈ Cl n×n actually forms a different vector space
S̄ , but, for the same coefficient vectors, its scalar product isexactly the same as forS . Therefore,
when we define a vector space by its scalar product, we are really defining a whole collection of
vector spaces instead of just one. This is because there are infinitely many different sets of basis
vectors that give infinitely many different vector representations for a particular set of coefficients
but all have the same scalar product.

1.8 Linear operators

A Euclidean linear operatorA∈ Cl m|Cl n is a object that maps vectors from the spacesCl n to Cl m as

y = Ax, (9)

1In most linear algebra text books and literature, the termorthogonal matrixis used to denote a matrix who’s columns
are orthonormal. This means that a matrix with just orthogonal columns (i.e.eH

i ej = δ 6= 1 wheni = j) is not an orthogonal
matrix. It would seem to make more sense that a matrix with orthogonal columns should be called an “orthogonal matrix”
and a matrix with orthonormal columns should be called an “orthonormal matrix” but this is not the standard use.

11

wherex∈ Cl n andy∈ Cl m, and also obeys the linear properties

z= A(αu+ βv) = αAu+ βAv (10)

for all α,β ∈ Cl andu,v∈ Cl n.

For every Euclidean linear operatorA it is possible to define another linear operator object
associated with it called theadjoint Euclidean linear operator, denotedAH ∈ Cl n|Cl m, which maps
vectors from the spacesCl m to Cl n as

y = AHx (11)

wherex∈ Cl m andy∈ Cl n.

For Euclidean linear operatorsA, the adjoint Euclidean linear operatorAH is equal to the matrix
element-wise conjugate transpose, orAH = (A)H where we use the notation(A)H to denote the
matrix element-wise conjugate transpose.

There are also other forms of a linear operator that correspond to different basis representations
of the vectors. Given a particular vector basis representation x = Ex̃, we will also define another
form of a linear operator which we refer to as thenon-Euclidean coefficientform.

According to our notation, the Euclidean operator application is shown in (9). Thenon-Euclidean
coefficient linear operatorapplication is written as

ỹ = Ãx̃, (12)

wherex̃∈ D, ỹ∈ R , andD ⊆ Cl n andR ⊆ Cl m. The EuclideanA and non-Euclidean coefficient̃A
linear operators are related asÃ = E−1

R
AED andA = ER ÃE−1

D
. The relationship between these two

linear operators is explored in Section ???.

Dumb Fact 1.1 An adjoint linear operator is not the same as the matrix Hermitian transpose(A)H

when dealing with non-Euclidean vector spaces.

In other words, while the adjoint of the Euclidean linear operatorAH is equal to the Hermitian
transpose of the forward Euclidean operatorA, this is not generally true for non-Euclidean linear
operators.

The forward and adjoint non-Euclidean coefficient linear operatorsÃ andÃH , respectively, are
related to each other with respect to the scalar products through the adjoint relationship

vH(Au) =< ṽ, Ãũ >R = (AHv)Hu =< ÃH ṽ, ũ >D (13)

for all ũ∈ D andṽ∈ R . In (13) we see the relationship between a linear operator, its adjoint, and
the scalar products associated with its range and domain spaces.

12

A linear operator is refereed to asinvertible if another unique linear operatorA−1 ∈ D|R exists
such that

A−1A = AA−1 = I .

Likewise, theinverselinear operatorA−1 also has anadjoint inverselinear operatorA−H ∈ R |D
associated with it which satisfies

A−HAH = AHA−H = I .

While the adjoint of a non-Euclidean coefficient linear operator is not generally equal to the
Hermitian transpose of the forward linear operator, the inverse does have the same relationship as
in the Euclidean case. In other words, the inverse of a non-Euclidean coefficient linear operatorÃ−1

is in fact equal to the matrix inverse of the forward non-Euclidean linear operator(Ã)−1. This will
be shown out in Section ???

Linear operators are used to represent a variety of different types of objects in a numerical
algorithm. Even vectorsx∈ Cl n can be viewed as linear operatorsx∈ Cl n|Cl where the domain space
for the forward operator is simplyCl which gives the forward operatory = xv (wherev ∈ Cl and
y∈ Cl n) and the adjoint operatory = xHv (wherev∈ S andy∈ Cl). Here we see that a vectorx or x̃
can take on a dual role. In one role, ˜x is just an array of coefficients with a scalar product attached
to it. In another role, it can represent a linear operator where the action ofxHy invokes the scalar
product< x̃, ỹ >.

1.9 Dealing only with scalar products and vector coefficients in algorithm construc-
tion

It is important to recognize that both a vectorx and its corresponding coefficient vector ˜x (where
x = Ex̃) can be represented as arrays of scalars in a computer program. However, our goal is
to go about formulating and implementing numerical algorithms and applications so as to only
manipulate arrays of the natural coefficient vectors ˜x and never manipulate the coefficients of the
Euclidean representation of the vectorsx themselves. The reason that one would only want to deal
with the natural coefficients of the vectors in a vector spaceand the scalar product is that it may be
inconvenient and/or very expensive to build a set of basis vectors so that the Euclidean form of the
vectors themselves can be formed and manipulated directly.This is the case, for example, in many
different finite-element discretization methods for PDEs [???].

13

2 Impact of non-Euclidean scalar products on matrix
representations of linear operators

As stated above, for every linear operatorA there is a correspondingnon-Euclidean coefficient linear
operatorÃ. In addition, every finite-dimensional linear operator hasone of several potential matrix
representationŝA. The different representations depend on how the domain andrange spaces relate
to the matrix representation.

Here we consider the impact that non-Euclidean vector spaces and scalar products have on
Euclidean linear operatorsA ∈ R |D, their non-Euclidean coefficient forms̃A, and their different
possible matrix representationŝA. We consider two such matrix representations in the following
two subsections, the “natrual” matrix representation and the “Euclidean” matrix representation.

2.1 The “natural” matrix representation of a linear operato r

First, lets consider the “natural” matrix representationÂ of a linear operatorA in terms of the basis
vectors for the spacesD andR which takes the form

A = ER ÂEH
D . (14)

Given this matrix form ofA, the non-Euclidean coefficient form of the linear operator is

y = ER ỹ

= Ax

= (ER ÂEH
D)(ED x̃)

= ER (ÂQD x̃)

= ER (ÂQD)x̃

⇒
Ã = ÂQD (15)

whereQD = EH
D

ED is the scalar product matrix for the spaceD. Hence, we see that applying
the operatorA using (14) to transform the vector coefficients ˜x to ỹ involves injecting the scalar
product matrixQD before multiplying by the “natural” coefficient matrix̂A. Using this notation, we
differentiate between the adjoint operator denotedÃH and the Hermitian transpose of the forward
operator denoted(Ã)H .

Now lets consider the definition of the adjoint using (14) which is

v = ED ṽ

= AHu

= (EDÂHEH
R)(ER ũ)

= ED(ÂHQR ũ)

14

= ED(ÂHQR)ũ

⇒
ÃH = ÂHQR (16)

whereQR = EH
R

ER is the scalar product matrix for the spaceR . This time, the application of the
adjoint requires the injection of the scalar product matrixQR .

Here we see the definition of the adjoint non-Euclidean coefficient linear operator̃AH = ÂHQR

is not equal to the Hermitian transpose of the forward non-Euclidean coefficient linear operator
(Ã)H = QH

D
ÂH . Here we now see the critical difference between a linear operator and a matrix when

dealing with linear operators that operate on the vector coefficients of vectors with non-Euclidean
basis representations.

Dumb Fact 2.1 When writing algorithms in vector coefficient form with non-Euclidean scalar
products, the adjoint non-Euclidean coefficient linear operator ÃH is not the same as the matrix
conjugate transpose of the forward non-Euclidean coefficient linear operatorÃ. In other words,
using our notation,ÃH 6= (Ã)H in general.

It is easy to show that (15) and (16) satisfy the adjoint relationship (13) as

< Ãũ, ṽ >R = (ÂQD ũ)HQR (ṽ)

= (ũHQDÂH)QR (ṽ)

= (ũH)QD(ÂHQR ṽ)

= < ũ, ÃH ṽ >D 2 (17)

If the linear operatorA is invertible such thatA−1 exists, then the inverse non-Euclidean coeffi-
cient linear operatioñA−1 is given by

y = ED ỹ

= A−1x

= (ER ÂET
D)−1(ER x̃)

= E−H
D

Â−1(E−1
R

ER)x̃

= (EDE−1
D

)E−H
D

Â−1x̃

= ED(E−1
D

E−H
D

)Â−1x̃

= ED(Q−1
D

Â−1)x̃

⇒
Ã−1 = Q−1

D
Â−1. (18)

Therefore, applying the inverse of the natural coefficient representation of linear operator to the
vector coefficients involves applying the inverse of the scalar product matrixQ−1

D
.

15

The adjoint inverse non-Euclidean coefficient linear operator Ã−H ∈ R |D is also easy to derive
and is given by

y = ER ỹ

= A−Hx

= (ER ÂEH
D)−H(ED x̃)

= E−H
R

Â−HE−1
D

ED x̃

= (ER E−1
R

)E−H
R

Â−H x̃

= ER (E−1
R

E−H
R

)Â−H x̃

= ER (Q−1
R

Â−H x̃)

= ER (Q−1
R

Â−H)x̃

⇒
Ã−H = Q−1

R
Â−H . (19)

Therefore, applying the adjoint inverse of the natural coefficient representation of linear operator to
the vector coefficients involves applying the inverse of thescalar product matrixQ−1

R
.

Here we see that the inverse non-Euclidean coefficient forward and adjoint linear operators̃A−1

and Ã−H , respectively, actually are to the simple matrix inverses of the non-Euclidean coefficient
forward and adjoint linear operators̃A andÃH , respectively.

Dumb Fact 2.2 The inverse non-Euclidean coefficient linear operatorÃ−1 actually is the same as
the matrix inverse of the forward non-Euclidean coefficientlinear operatorÃ. In other words, using
our notation,Ã−1 = (Ã)−1.

2.2 The “Euclidean” matrix representation of a linear operator

Now consider another matrix representation of a linear operator where the forward operator appli-
cation (9) is implemented as

ỹ = Ãx̃ = Âx̃ (20)

wherex = ED x̃ andy = ER ỹ. This representation is quite common in many different codes and
makes good sense in many cases.

Given the matrix representation of the forward operator application in (20) one can derive the
adjoint operator from the adjoint relationship as

< Ãũ, ṽ >R = (Âũ)HQR (ṽ)

= (ũH ÂH)QR (ṽ)

= ũH(QDQ−1
D

)ÂHQR ṽ

16

= (ũH)QD(Q−1
D

ÂHQR ṽ)

= < ũ, ÃH ṽ >D

⇒
ÃH = Q−1

D
ÂHQR (21)

From (21) we can see that applying the adjoint in this case requires that the inverse of the scalar
product matrixQ−1

D
be applied.

From (20) or (21), one can derive the exact representation ofthe operatorA that is consistent
with this matrix representation.

First, from (20) we see that

y = ER ỹ

= ER (Âx̃)

= ER Â(E−1
D

ED)x̃

= (ER ÂE−1
D

)(ED x̃)

= Ax

⇒
A = ER ÂE−1

D
(22)

We can also derive the representation ofA from (21) as

y = ED ỹ

= ED(Q−1
D

ÂHQR x̃)

= ED(EH
D ED)−1ÂH(EH

R ER)x̃

= ED(E−1
D

E−H
D

)ÂH(EH
R ER)x̃

= (EDE−1
D

)(E−H
D

ÂHEH
R)(ER x̃)

= AHx

⇒
AH = E−H

D
ÂHEH

R

⇒
A = ER ÂE−1

D
(23)

Note that we already know thatA in (22) and (23) satisfies the adjoint relationship, since (21) was
derived from the adjoint relationship.

Given the “Euclidean” form ofA in (22), the action of the inverse linear operatorA−1 (should it
exist) in the operationy = A−1x is given by

y = ED ỹ

17

= A−1x

= (ER ÂE−1
D

)−1(ER x̃)

= EDÂ−1(E−1
R

ER)x̃

= ED(Â−1x̃)

⇒
ỹ = Â−1x̃. (24)

Likewise, the action of the adjoint inverse linear operatorA−H of the formy= A−Hx is also easy
to derive and is given by

y = ER ỹ

= A−Hx

= (ER ÂE−1
D

)−H(ED x̃)

= E−H
R

Â−HEH
D ED x̃

= (ER E−1
R

)E−H
R

Â−H(EH
D ED)x̃

= ER (Q−1
R

Â−HQD x̃)

⇒
ỹ = Q−1

R
Â−HQD x̃. (25)

18

3 Impact of non-Euclidean scalar products on derivative
representations

Here we describe how to correctly compute and/or apply the derivative of a multi-variable (vector)
function so as to be consistent with the function’s domain and range spaces. We will see that these
issues are closely related to the discussion of different matrix representations in Section 2.

Here, we will deal with real-valued vector spaces denoted with IRn. The reason we do this is
that while derivatives for complex-valued functions are well defined, their use in optimization and
other types of numerical algorithms can be a little tricky and therefore we stick with real-valued
functions here to avoid trouble.

We now consider multi-variable scalar functions and multi-variable vector functions in the next
two subsections.

WARNING: In the derivative discussion below, the usage the space notation X is incorrect and
should be replaced withCl n in many cases and visa versa.

3.1 Derivatives of multi-variable scalar functions

Consider the Euclidean-vector, scalar-valued functionf (x)

x∈ IRn → f ∈ IR .

The definition of the first derivative of this function comes from the first-order variation

δ f =
∂ f
∂x

δx.

Therefore, the derivative∂ f/∂x first and foremost is a linear operator that when applied to some
variation inx of δx gives the resulting variationδ f , to first order, in the functionf . For scalar-valued
functions, it is common to define thegradientof the function which is defined as∇ f = ∂ f/∂xT ∈ IRn

and is usually represented as a vector in the spaceIRn and this gives

δ f = ∇ f Tδx.

Let the coefficients of the gradient vector be denoted as∇̃ f such that∇ f = E∇̃ f , whereE is the
basis for the spaceX .

Now consider an implementation of the functionf (x) that takes in the coefficients ˜x and returns
f as

x̃∈ IRn → g∈ IR .

where

f (x) = g(x̃).

19

The functiong is what would be directly implemented in a computer code in many cases. Since
x̃ = E−1x, we see that

∂ f
∂x

=
∂g
∂x̃

∂x̃
∂x

=
∂g
∂x̃

E−1

which gives

∇ f = E−T∇g. (26)

Equating (26) to∇ f = E∇̃ f and performing some manipulation we see that

∇ f = E∇̃ f

= E−T∇g

⇒

∇̃ f = E−1E−T∇g

= (ETE)−1∇g

= Q−1∇g (27)

whereQ = ETE. Therefore, to compute the coefficients̃∇ f for the gradient vector∇ f given the
gradient∇g for the functiong(x̃), one must apply the inverse of the scalar product matrixQ−1 as
shown in (27). Note that this results in the inner product

∇ f Tδx = (∇̃ f)TQ(δ̃x) = (Q−1∇g)TQ(δ̃x) = ∇gT(Q−1Q)δ̃x = ∇gT δ̃x

which is nothing more than the simple dot product involving arrays of data that are directly stored
and manipulated in the computer. This is the first case that wewill see of ascaling invariant
computation where the gradient’s scalar product value is independent of the choice of the basis. In
this case, it would be more efficient to implement the gradient ∇ f T as a linear operator∇ f T = ∂ f/∂x
instead of as a vector in order to avoid having to apply the inverseQ−1 just to remove its effect later
usingQ in the scalar product. The vector form of the gradient∇ f ∈ X , however, is critical in many
types of numerical algorithms since it gets assigned to other vector objects and gets passed to linear
operators (i.e. it becomes the right-hand side for a linear system).

Note that representation∇ f T = ∂ f/∂x as a linear operator stored as∇gT = ∂g/∂x̃ is equivalent
to the “Euclidean” form of the linear operator described in Section 2.2 where the range space is
simply R = IR1. However, the vector representation∇ f = E∇̃ f , where∇̃ f = Q−1∇g, is equivalent
to the “natural” matrix representation of the linear operator ∇ f ∈ X |IR .

ToDo: Derive and describe the impact of the scalar product on the Hessian matrix forf (x). I do
not know what this is exactly but I need to derive this so that Ican determine that the Newton step
for the minimization algorithm is not effected! In think theHessian operator is∇2 f = Q−1∇2gQ−1

but In need to verify this for sure.

20

3.2 Derivatives of multi-variable vector functions

We now consider the extension of the above discussion of scalar-valued functions to vector-valued
function f (x) of the form

x∈ X → f ∈ F .

Again, many different algorithms consider the first-order variation

δ f =
∂ f
∂x

δx.

In this notation,∂ f/∂x is a linear operator that maps vectors fromδx∈ X to δ f ∈ F .

The vectors take the formx = EX x̃, f = ER f̃ , δx = EX δ̃x andδ f = ER δ̃ f wherex̃, f̃ , δ̃x, and
δ̃ f are the coefficient vectors that would typically be directlystored and manipulated in a computer
program.

Now consider the case where functionf (x) is implemented in coefficient form through the
function

x̃∈ IRn → g∈ IRm.

where

f (x) = EF g(x̃).

The functiong(x̃) is what would typically be implemented in a computer code and∂g/∂x̃ could be
efficiently and simply computed using automatic differentiation (AD) [???] for example. The full
forward linear operator would then be

∂ f
∂x

= EF

∂g
∂x̃

∂x̃
∂x

= EF

∂g
∂x̃

E−1
X (28)

which takes the same form as the “Euclidean” representationof the linear operator described in Sec-
tion 2.2. This operatorA= ∂ f/∂x can either be formed and stored using some matrix representation
or can be applied implicitly.

One has two choices how to actually implement the operatorA= ∂ f/∂x using a matrix represen-
tation. The first option is to just explicitly store the matrix ∂g/∂x̃ that would be directly computed
from the functiong(x̃) using AD for instance. The forward operation applicationy = (∂ f/∂x)x
would then be applied in coefficient form as

ỹ =
∂g
∂x̃

x̃.

21

This “Euclidean” form, however, would then require that theadjoint be implemented as

y =
∂ f
∂x

T

x ⇒ ỹ = QX
−1∂g

∂x̃

T

QF x̃ (29)

as shown in (21), which requires the application of the inverse of the scalar product matrixQX
−1

with each application of the adjoint.

The other option for a matrix representation is to compute and storeÂ = (∂g/∂x̃)QX
−1 and this

gives the “natural” representation

∂ f
∂x

= EF

∂g
∂x̃

E−1
X = EF

∂g
∂x̃

E−1
X (E−T

X ET
X) = EF

∂g
∂x̃

(ET
X EX)−1ET

X = EF ÂET
X (30)

Note that forming the product(∂g/∂x̃)QX
−1 may be very expensive to do in practice and can destroy

the sparsity of∂g/∂x̃. Note that this is equivalent to the vector representation of ∇ f described in
Section 3.1.

22

4 Impact of non-Euclidean scalar products on various numerical
algorithms

Here we discuss the bread and butter of the impact of scalar products in how they affect numerical
algorithms that we develop and implement. The approach taken here is to first start with the algo-
rithms stated in Euclidean form without regard to issues of scalar products. This is fine as long as
we recognize that the vectors,x for instance, that we are dealing with will eventually be substituted
for there basis and coefficient formx= Ex̃ from which we do manipulations. What we will try to do
is to see how the expressions in the algorithm change and we will try to perform the manipulations
so that we are left with the only the vector coefficients (i.e.x̃), scalar product matrices (i.e.QX), and
linear operators. We will also try to remove any explicit dependence on the exact form of the basis
representation (i.e. the basisEX should not appear in any final form of the coefficient expressions).

The general approach is summarized as:

1. State the algorithm in Euclidean form using vectors with respect to a Euclidean basis (e.g.x)
with simple dot products (e.g.xHy) etc.

2. Substitute the basis representations for all vectors (e.g. x = Ex̃) in all expressions.

3. Manipulate the expressions and try to decompose all operations into coefficient form involv-
ing only the vector coefficients (e.g. ˜x), scalar product matrices (e.g.QX), and other model-
defined linear operators if needed.

To demonstrate the process, consider the Euclidean form of the inner CG iteration

ρk = rHr,

p = r +
ρk

ρk−1
p,

q = Ap,

α =
ρk

pHq
,

x = x+ αp,

r = r −αq.

In this algorithm, the linear operatorA∈ S |S is symmetric so we are dealing with just one vector
spaceS with scalar productQ. Let E ∈ Cl n×n be any basis representation such thatQ = EHE.
Substitutingr = Er̃, p = Ep̃, q = Eq̃, andx = Ex̃ in the above inner loop expressions yields

ρk = r̃HEHEr̃,

Ep̃ = Er̃ +
ρk

ρk−1
Ep̃,

Eq̃ = (EÃE−1)Ep̃,

α =
ρk

p̃HEHEq̃
,

Ex̃ = Ex̃+ αEp̃,

23

Er̃ = Er̃ −αEq̃,

⇒

ρk = r̃HQr̃,

Ep̃ = E(r̃ +
ρk

ρk−1
p̃),

Eq̃ = E(Ãp̃),

α =
ρk

p̃HQq̃
,

Ex̃ = E(x̃+ αp̃),

Er̃ = E(r̃ −αq̃),

⇒

ρk = < r̃ , r̃ >,

p̃ = r̃ +
ρk

ρk−1
p̃,

q̃ = Ãp̃,

α =
ρk

< p̃, q̃ >
,

x̃ = x̃+ αp̃,

r̃ = r̃ −αq̃.

As seen in the above example, if after this transformation wecan manipulate the expressions such
that the coefficient forms do not explicitly involve the basis matrixE but instead only involve the
scalar product matrixQ= EHE and the non-Euclidean coefficient forms of the linear operators, then
we have succeeded in deriving a general form of the algorithmthat will work for all non-Euclidean
vector spaces.

It is critical to note that when the selection of the scalar products affects an algorithm then a
good selection for the scalar products can positively impact the performance of the algorithm. The
dramatic improvement in the performance of various numerical algorithms that is possible with the
proper selection of scalar products is documented in [???] and [???]. Many numerical algorithms
applied to applications that are based on discretizations of PDEs can show mesh-independent scaling
when using the proper scalar products for instance [???].

4.1 Newton methods

The first set of methods that we will consider are Newton methods [???]. In their most basic form,
a Newton method seeks to solve a set of multi-variable nonlinear equations

f (x) = 0

24

wherex∈ IRn and

x∈ IRn → f ∈ IRn

is a vector function of the form described in Section 3.2 where f (x) = EF g(x̃) andg(x̃) is what is
implemented in the computer. The undamped Newton method seeks to improve the estimate of the
solutionxk by solving the linear system

∂ f
∂x

d = − f (xk) (31)

and then update the estimate using

xk+1 = xk +d. (32)

It can be shown than whenx0 is sufficiently close to a solutionx∗ such thatf (x∗) = 0, and if∂ f/∂x
is nonsingular, then the iteratesx1,x2, . . . ,xk,xk+1 converge quadratically with

||xk+1−x∗|| < C||xk−x∗||2

for some constantC∈ IR . In a real Newton method, some type of modification is generally applied
to the step computation in (31) and/or the update in (32) in order to insure convergence from remote
starting pointsx0.

We now consider the impact that non-Euclidean basis representations and scalar products have
on two forms of the Newton step computation: exact and inexact.

4.1.1 Exact Newton methods

In an exact Newton method, the Newton system in (31) is solvedto a high precision. Now let’s
consider the impact that substituting non-Euclidean basisrepresentation has on the Newton method.
The basis representations arex = EX x̃ and f = EF f̃ for the spacesX ∈ IRn andF ∈ IRn. Now, let
us assume the “Euclidean” representation for∂ f/∂x which gives the coefficient form of (31) as

∂g
∂x̃

d̃ = −g. (33)

We then substitutẽd into the update in (32) which is

x̃k+1 = x̃k + d̃. (34)

Comparing (31)–(32) with (33)–(34), it is clear that the choice of the basis functions for the spaces
X or F has no impact on the Newton steps that are generated. Thisinvarianceproperty of Newton’s
method is one of its greatest strengths. However, solving the Newton system exactly can be very
expensive and taking full steps can cause the algorithm to diverge and modifications to handle these
issues are considered later. First, however, the inexact computation of the Newton step is discussed
in the next subsection.

25

4.1.2 Inexact Newton methods

In an inexact Newton method, the linear system in (31) is not solved exactly, but instead is only
solved to a tolerance of

||∂ f
∂x

d+ fk||F
|| fk||F

≤ η (35)

whereη ∈ IR is known as the forcing term and typically is selected such that η ∝ || fk||F in order to
ensure quadratic convergence. The coefficient representation of (35) takes the form

(

∂g
∂x̃

d̃+gk

)T

QF

(

∂g
∂x̃

d̃+gk

)

gT
k QF gk

≤ η2 (36)

From (36) we see that the selection of the scalar product matrix QF that defines the norm||.||F (as
defined in (7)) can have a large impact on the newton step computation. However, assuming the
“Euclidean” form of the forward operator is used as in (33), then the selection of the scalar product
for the spaceX has no impact on the computed Newton step. Such a computationis said to beaffine
invariant [???].

4.2 Minimization, merit functions and globalization methods

Let’s consider the minimization of a multi-variable scalarfunction

min f (x) (37)

where f (x) of the form described in Section 3.1 wheref (x) = g(x̃) andg(x̃) is what is actually
implemented in a computer program.

As stated in Section 3.1, the coefficient vector for the gradient∇ f , which takes the form∇̃ f =
QX

−1∇g, is affected by the definition of the basisEX but the scalar product

∇ f Td = (QX
−1∇g)TQX (d̃) = ∇gT(d̃) (38)

is not affected, whered = EX d̃ ∈ X is some search direction.

One of the most basic requirements for many minimization algorithms is the descent require-
ment which can be stated as

∇ f Td < 0 (39)

for ∇ f 6= 0.

26

Consider the steepest-descent directiond =−γ∇ f whereγ > 0 is some constant. With a Euclid-
ean basis, the coefficient vector for this direction takes the form d̃ = −γ∇g. However, when a
non-Euclidean basis is used, the coefficient vector for the the steepest-descent direction is

d̃ = −γQX
−1∇g.

Therefore, the choice of the scalar product can have a dramatic impact on the steepest-descent
direction. The descent property for the steepest-descent direction then becomes

∇ f Td = (∇gTQX
−1)QX (−γQX

−1∇g) = −γ∇gTQX
−1∇g < 0.

for ∇g 6= 0. Therefore, the descent property for the steepest-descent direction is changed even
though the scalar product definition itself is not.

Another selection for the step direction takes the formd = −B−1∇ f whereB is some approx-
imation for the Hessian off (x). Since∇ f changes with a non-Euclidean basis, so will this search
direction. The choice ofB for variable metric methods will be addressed in Section 4.4.

Descent alone is not sufficient to guarantee convergence. Instead, more stringent conditions
must be met. One such set of conditions include a sufficient decrease condition

f (xk + αd) ≤ fk +c1α(∇ fk)
Td (40)

(often know as theArmijo condition), and a curvature condition

(∇ f (xk + αd))Td ≤ c2(∇ fk)
Td (41)

where 0< c1 < c2 < 1. Together, (40)–(41) are known as theWolfe conditions[???].

Now let’s consider the coefficient form of the conditions in (40)–(41) for non-Euclidean basis’
which from (38) become

g(x̃k + αd̃) ≤ gk +c1α(∇gk)
T d̃ (42)

and

(∇g(x̃k + αd̃))T d̃ ≤ c2(∇gk)
T d̃. (43)

It is clear from (42)–(43) that even through the selection ofthe scalar product defined byQX affects
the steepest-descent direction, for instance, it does not actually affect the Wolf conditions for a
general directiond̃. The computation of the directioñd can, however, be impact by the choice of
the scalar product as described above. What this means is that the Wolfe conditions are invariant to
the selection of the basis for the spaceX but the search direction. Again, invariance with respect to
the selection of the basis is consider a very attractive property for numerical algorithms.

27

4.3 Least-squares merit functions

Here we consider the impact that non-Euclidean scalar products have on standard least-square merit
functions of the form

m(x) = f (x)T f (x) (44)

where f (x) is a multi-variable vector-valued function of the form described in Section 3.2 which is
implemented in terms ofg(x̃) where f (x) = EF g(x̃). The least-squares function defined in (44) is
used in a variety of contexts from globalization methods fornonlinear equationsf (x) = 0 [???] to
data fitting optimization methods [???].

The gradient∇m∈ X of m(x) defined in (44) is given by

∇m=
∂ f
∂x

T

f . (45)

When∂ f/∂x is represented in “Euclidean” form as shown in (28), the coefficient form of the adjoint
Jacobian-vector product in (45), shown in (29), is given by

∇̃m= QX
−1∂g

∂x̃

T

QF g. (46)

In (46) we see that the gradient direction for the least-squares merit function in (44) is impacted by
both the scalar product matricesQX andQF .

4.4 Variable metric quasi-Newton methods

Non-Euclidean scalar products can dramatically improve the performance of optimization methods
that use variable-metric quasi-Newton methods [???]. Herewe will consider a popular form of
variable-metric approximation called the BFGS formula [???] which is defined as

B+ = B− (Bs)(Bs)T

sTBs
+

yyT

yTs

whereB is the current approximation to the Hessian∇2 f andB+ is the updated approximation.

Generally, the update vectors are defined asy = ∇ fk−∇ fk−1 ands= xk−xk−1 but the analysis
here is independent of the actual choices for these vectors.What will be made clear here is the
impact that the non-Euclidean scalar products have on the various implementations of this method.

We will consider two forms of the above approximation. First, we consider an explicit im-
plementation that directly stores the coefficients of the matrix in the “natural” form. Second, we
consider an implicit implementation that only stores pairsof update vectors and applies the inverse
implicitly. The implicit representation then leads naturally to a limited-memory implementation.

28

4.4.1 Explicit BFGS matrix representation

For the explicit matrix representation we will assume thatB andB+ are being stored in the “natural”
coefficient forms ofB = EB̂ET andB+ = EB̂+ET . Note that the basis matrixE is generally not
given explicitly and a unique choice is not known; only the scalar product matrixQ = ETE is
known. By substituting in the coefficient forms ofB = EB̂ET , B+ = EB̂+ET , y = Eỹ, ands= Es̃
into (4.4) and performing some manipulation we obtain

EB̂+ET = EB̂ET − [(EB̂ET)(Es̃)][(EB̂ET)(Es̃)]T

(Es̃)T(EB̂ET)(Es̃)
+

(Eỹ)(Eỹ)T

(Eỹ)T(Es̃)

= EB̂ET − E(B̂Qs̃)(B̂Qs̃)TET

s̃TQ(B̂Qs̃)
+

EỹỹTET

ỹTQs̃

= E

[

B̂− (B̂Qs̃)(B̂Qs̃)T

s̃TQ(B̂Qs̃)
+

ỹỹT

ỹTQs̃

]

ET

⇒

B̂+ = B̂− (B̂Qs̃)(B̂Qs̃)T

s̃TQ(B̂Qs̃)
+

ỹỹT

ỹTQs̃
. (47)

What (47) shows is that the “natural” matrix representationof B can be updated toB+ by using the
coefficients of the vectors ˜s andỹ, the matrix coefficientŝB themselves, and the action of the scalar
product matrixQ. Note that the final expressions for the update do not containthe basis matrixE
itself since this matrix is not known in general. Also note that q̃ = B̂Qs̃ is just the coefficient vector
from the output of the action ofq = Bsand the remaining operations involvingQ which are ˜sTQq̃
ands̃TQq̃ are simply applications of the scalar products< s,q> and< y,y> and therefore no direct
access the theQ operator is needed here. However, note that applying the “natural” representation
of B does require the ability applyQ as a linear operator and not just a scalar product.

What all this means is that code that currently implements anexplicit BFGS update assuming
for a Euclidean basis should only need minor modifications inorder to work correctly for non-
Euclidean scalar products.

Note that applying the inverse ofB = EB̂ET for v= B−1u is simply a special case of (19) and is
given as

v = Eṽ

= B−1u

= (EB̂ET)−1(Eũ)

= E(Q−1B̂−1ũ)

⇒
ṽ = Q−1B̂−1ũ. (48)

Therefore, applying the inverse of the natural coefficient representation ofB involves applying the
inverse of the scalar product matrixQ−1.

29

4.4.2 Implicit BFGS matrix representation

For the implicit representation of a BFGS approximation we will consider the approximation of the
inverseH = B−1 and the updates= H−1

+ y using the update vectorss andy which is given by the
formula

H+ = VTHV + ρssT (49)

where

ρ =
1

yTs
, (50)

V = I −ρysT . (51)

(52)

Here we consider a so-called limited-memory implementation (L-BFGS) wherem sets of update
quantities{si ,yi ,ρi} are stored for the iterationsi = k−1,k−2, . . . ,k−mwhich are used to update
from the initial matrix inverse approximationH0 = B−1

0 to giveH after themupdates (see [???] for
details). The implementation of the inverse Hessian-vector productv = Hu is provided by a simple
two-loop algorithm involving only simple vector operations like dot products, vector scalings, vector
additions, and the application of the linear operatorH0. Therefore, we will go and skip ahead and
write the general non-Euclidean coefficient form of this algorithm. This simple algorithm is called
the two-loop recursion [???] which is stated as

L-BFGS two-loop recursion for computing ṽ = H̃ũ

q̃ = ũ
for i = k−1, . . . ,k−m

αi = ρi < s̃i , q̃ >
q̃ = q̃−αi ỹi

end
r̃ = H̃0q̃
for i = k−m, . . . ,k−1

β = ρi < ỹi , r̃ >
r̃ = r̃ +(αi −β)s̃i

end
ṽ = r̃

While it is subtle, the insertion of the general scalar products< s̃i , q̃ > and< ỹi , r̃ > can result
in a dramatic improvement in the performance of minimization methods that use it and it has been
shown to have mesh-independent convergence properties (i.e. the number of iterations does not
increase as the mesh is refined) for some classes of PDE-constrained optimization problems [???].

30

4.5 Inequality constraints

Consider a simple set of bound inequality constraints of theform

a≤ x (53)

wherex,a ∈ S with basis representationsx = Ex̃ anda = Eã. Inequality constraints of this form
present a difficult problem for numerical algorithms using non-Euclidean basis matricesE since the
inequality constraint in (53) is really a set of element-wise constraints

ai ≤ xi , for i = 1. . .n. (54)

The element-wise nature of (54) means that we can not simply substitute the coefficient vector
components ˜xi andãi in for xi andai . One could, however, simply substitute in the coefficient vector
components and have the algorithm enforce

ãi ≤ x̃i , for i = 1. . .n, (55)

but then that may fundamentally change the meaning of these constraints and may destroy the phys-
ical utility of these constraints for the application. Although, note that in some types of applications
this type of substitution may be very reasonable. For example, in standard finite-element discretiza-
tions of PDEs, the vector coefficients directly correspond to physical quantities such as temperature,
stress, and velocity at the mesh nodes. Therefore bounding these types of coefficients may be very
reasonable even through a non-Euclidean scalar product is desirable in order to introduce mesh-
dependent scaling into other parts of the algorithm. In other types of discretizations, such as those
that use a spectral basis, there is no physical meaning to thecoefficients so inequalities involving
these are meaningless. Note that imposing the inequality constraints in non-Euclidean coefficient
form as in (55) is equivalent to imposing the inequalities inEuclidean form as

E−1a≤ E−1x (56)

which is important when performing the initial transformation from the Euclidean form (i.e. using
dot productsxHy) to the non-Euclidean coefficient form (i.e. using scalar products< x̃, ỹ >). Here,
we hope that in doing the transformation of the entire algorithm that we can remove any explicit
mention of the basis matrixE itself.

In cases where component-wise inequalities on vector coefficients is not useful, one has no
choice but to form an explicit basis and to pose these constraints as general linear inequality con-
straints of the form

b̃≤ Ex̃,

whereb̃ = Eã. Even if an explicit basis must be formed in order to preservethe meaning of the
inequality constraints, there is still utility in expressing an algorithm in general non-Euclidean coef-
ficient form since it avoids having to convert all vectors back and forth using the basis representation
or having to invert the basis matrix.

31

Therefore, if it is reasonable to impose inequality constraints on the coefficient vectors them-
selves, then ANAs involving inequalities with non-Euclidean scalar products can be very reason-
able and straightforward to implement. When replacing the Euclidean inequalities with the vector
coefficients is not reasonable, then the an explicit basis representation is required to express the
constraints.

32

5 Vector Coefficient Forms of Numerical Algorithms

Here we finally come to reality. Up to this point in the discussion we have been very careful to
differentiate the vectorx from the vector coefficients ˜x related by the equationx = Ex̃. We have
viewed algorithms in Euclidean form using the vectorsx andy and simple Euclidean dot products
xHy and then in non-Euclidean coefficient form using coefficientvectors ˜x andỹ and scalar products
< x̃, ỹ >. When mathematicians write numerical algorithms in coefficient form, however, they do
not typically use math accents like ˜x and Ã or acknowledge the related Euclidean forms. Instead,
they use non-accented identifiers and often the only clue that we are dealing with non-Euclidean
vectors, vector spaces, and linear operators expressed in vector coefficient form is that simple dot
products likexHy are replaced with< x,y >. As we have show above, expressing algorithms in
vector coefficient form with non-Euclidean scalar productshas a dramatic impact on the definition
linear operators, derivative computations, and the meaning of certain types constructs line inequality
constraints. For example, we showed in Section ??? that the adjoint non-Euclidean coefficient linear
operatorÃH is not the same thing as the matrix conjugate transpose of theforward non-Euclidean
coefficient linear operator̃A.

Dumb Fact 5.1 When most mathematicians write a numerical algorithm usingthe scalar product
notation< x,y>, the vectors x and y are the coefficients of the vectors and allof the linear operators
become non-Euclidean coefficient operators which arenot equivalent to matrices in general!

However, using the approach outlined above, one can comfortably go between the Euclidean
dot product form (i.e.xHy) and the non-Euclidean scalar product form (i.e.< x,y >).

33

6 Summary

Here we have presented an approach to looking at non-Euclidean scalar product spaces that deals
in very straightforward terms using simple concepts of linear algebra. The idea is to first look at all
algorithms assuming Euclidean vector spaces and explicit Euclidean coefficient vectors and then to
substitute in the basis representation for non-Euclidean vector spaces. After this substitution, one
then tries to manipulate the expressions to come up with the building blocks of scalar products and
linear operators and only considers the explicit representation and manipulation of the coefficient
vectors and never the Euclidean coefficients of the vectors themselves.

34

7 ToDo

• To make this type of discussion more helpful, it would be niceto have a concrete application
and numerical algorithm example to work through to show the impact of all of this. This
could, in fact, make a nice journal paper to show off Thyra if done well.

35

References

36

v1.27

